

¹Suru, Whenayon Peter, ¹Odeyemi Felix Gbenga, ¹Amoo Nureni Babatunde, ¹Isma'il Abdullahi Abdullahi, ¹Aroge Sunday Kayode, ²Tokede Clement Adedapo ¹Department of Surveying & Geoinformatics, Federal Polytechnic, Ede, Osun State ²Department of Architectural Technology, Federal Polytechnic, Ede, Osun State Email: <u>petyon73@yahoo.com</u> <u>https://ochid.org/0000-0002-8525-1655</u>,

2.0 Materials and Methods

3.0 Data Downloading and Processing 3.1 Data Downloading

3.2 Data Processing

3.2.1 Analysis of Results

Table 1.0: Misclosure

	Existing Coordinates			Observed Coordinates			Diff. Coordi	nates	Diff. Heigh
									t
Statio	Northings	Eastings (m)	Height	Northings	Eastings	Height	Misclo	sure (m	l)
n	(m)			(m)	(m)	(m)			
Statio	Northings	Eastings (m)	Height	Northings	Eastings	Height	ΔN	ΔΕ	ΔH
n	(m)			(m)	(m)	(m)			

OCSD	852769.67	664283.655	322.073	852769.34	664283.86	322.10	0.33	-	-
240S	5	2	6	5	3	5	0	0.28	0.031
								1	4

3.2.2 Accuracy Obtained

Linear Accuracy

=

 $\Delta W_{2+2} \Delta F_{2} D_{3}$ sure in the Northing coordinate = +0.330 mN

 ΔE = misclosure in the Easting coordinate = -0.281mE

 $\sum D$ = Total Distance = summation of distances within the network = 5.634km = 5634

The Linear accuracy = $\frac{1}{\frac{\sqrt{(+0.330^2 + -0.281^2)}}{5634}} = \frac{1}{\frac{\sqrt{(0.1089 + 0.078961)}}{5634}} = \frac{1}{0.00007693101674}$ = 12,998.65831 \approx 13,000

Linear accuracy = 1:13,000

24mm√ K

=

=

m fter closing on pillar OCSD 240S was -0.0314m, while the minimal accuracy determined using the formula 24mm $\forall K$ was 0.057m. As a result, the job's accuracy was within the acceptable range.

- Х
- =

spect	Allowable Closure	Result Obtained	Remark
1. Traversing a. Angular misclosure $(30"\sqrt{N})$ Where N = total number of stations	00° 02' 10.77"	00° 01' 56.19"	Within allowable limit
b. Linear misclosure $\frac{1}{\sqrt{(\Delta N)^2 + (\Delta E)^2}}$	1 : 5000	1 : 13,000	Within allowable limit
Total distance 2. Levelling misclosure $(24mm\sqrt{k})$ Where k =total distance covered in kilometer	±0.057m	-0.0314m	Within allowable limit

4.0 Plan Production and Presentation

5.0 Summary, Problems Encountered, Recommendation and Conclusion

References

- Akintola, F.O., Adetunji, O. R., & Akinjare, O. A. (2020). Application of unmanned aerial vehicles for road alignment survey in Nigeria. Heliyon, 6(5), e03914. http://doi.org/10.1016/j.heliyon.2020.e03914 Reston,
- American Society of Civil Engineers. (2017). Standard Guidelines for Highway surveying manual. VA: American Society of Civil Engineers

Esmaeili, M., Kamranzad, F., & Vafaeinezhad, M. (2017). GPS Surveying of a 100 km road	alignment in Iran.				
Journal of Applied Geodesy, 11(4), 253-260.	-				
Fajemirokun F. A., (2003). <i>Geo-information technology and Need for curricular review in</i>	<u>surveying</u>				
personnel training programme in Nigeria Tertiary Institutions, paper presented at the fir	rst Annual General				
Assembly and Conference of the Geo-information Society of Nigeria (GEOSON Abuja 2003) he	eld at the NUC				
Auditorium, Abuja, Nov. 26-27.					
Federal Aviation Administration. (2012). Airport Surveying-Geographic Information System	(GIS)				
Requirements. Advisory circular, AC 150/5300-18B.					
Federal Aviation Administration. (2018). Highway surveying mannual. Washington, DC: U.S.	Department of				
Transportation.					
Gao, B., Lang, H., & Ren, J. (2020). "Stereo Visual SLAM for Autonomous vehicles: A review."	In 2020 IEEE				
International conference on systems, Man, and Cybermetics (SMC) (pp.1316-1322). IEEE.					
Gao, W., Liu, X., Guo, W., & Wang, S. (2020). Comparative study on the accuracy of GPS and	LiDAR in route				
surveying of UAVs. Journal of Physics: Conference series, 1529(1), 012027. doi:	10.1088/1742-				
6596/1529/1/012027					
Indian Road Congress. (2012). Guidelines for road alignment (2nd ed.). New Delhi; Indian Road	Congress.				

- Khan, S.A., Ahmand, S., Farooq, S., & Zia, M. H. (2020): LiDAR surveying for road alignment: A case study of a 30km road in Pakistan. Journal of geographic Information System, 12(1), 1-15. doi: 10.4236/jgis.2020.121001
- Liu, Y., Li, Z.,Li, H., & Li, D. (2021). Application of UAVs in route Surveying: A case study in China . Journal of Traffic and Transportation Engineering (English Edition), 8(2), 127-136. doi:10.1016/j.jtte.2020.06.004
- Saha, S.K. (2015). Route Surveying and Design. Boca ratcon, FL: CRC Press.
- Specifications for Large Scale Cadastral and Engineering Surveys. (2010). A Pamphet of revised edition published by The Survey Laws and regulation committee of SURCON.
- SURCON (2010). Examination Guidelines for Pupil Surveyors (2010). Surveyors councils of Nigeria, (1990), *Guidelines for the control of survey practice in Nigeria.*